The influence of the source of carbon incorporated in MCM-48 molecular sieves applied to CO₂ photoconversion into methanol

Eliane R. Januário¹ (PG), Ana F. Nogueira² (PQ), Heloise O. Pastore¹ (PQ)*.

*lolly@iqm.unicamp.br

¹ Grupo de Peneiras Moleculares Micro e Mesoporosas, Institute of Chemistry, UNICAMP, CEP 13083-970, SP, Brazil

² Laboratório de Nanotecnologia e Energia Solar, Institute of Chemistry, UNICAMP, CEP 13083-970, SP, Brazil

Keywords: Molecular Sieves, CO2 photoconversion, Solar Fuels

Abstract

In this work we applied MCM-48, (Carbon Ceramic Materials) CCM-MCM-48 decorated with Cu_2O/CuO nanoparticles in the photocatalytic reduction of CO_2 to CH_3OH .

Introduction

Many environmental problems are caused by the increase of CO_2 levels in the atmosphere. One useful way to tackle this problem is the photoconversion of CO_2 into solar fuels. This work describes the synthesis of cubic molecular sieve MCM-48 and Carbon Ceramic Materials CCM-MCM-48 which were impregnated with Cu₂O and CuO nanoparticles previously prepared. The materials were characterized by XDR, Uv-Vis and BET. The photocatalytic tests were carried out in a reactor using a solar simulator (AM 1.5). The results of the photocatalytic tests were monitored by gas chromatography technique (GC). We observed the formation of liquid CH₃OH.

Results and Discussion

MCM-48 and CCM-MCM-48 were synthesized following the references [1,2]. Copper oxide nanoparticles (Cu2O and CuO) were prepared according to the literature. [3,4] The molecular sieves and the copper oxide nanoparticles were mixed in isopropyl alcohol 99%, using sonication at 5 wt.%. The materials were dried in oven at 150 °C for 24 h under inert atmosphere. The photocatalytic process occurs in a reactor containg 50 mg of catalysts, 300 μ L of water and 2 bar of CO₂. The system was irradiated for 20 h. Next, the liquid phase was collected and analyzed by GC. The photocatalytic results were compared to those of TiO₂ P25 particles collected in the same conditions.

In **Table 1** surface area analysis of graphite, MCM-48 and CCM-MCM-48 are show.

 Table 1- Surface area values of molecular sieves

Material	Surface Area (BET)(m ² .g ⁻¹)
Graphite	6
MCM-48	771
CCM-MCM-48	113

The decrease of surface area is due to the [4]- Yau graphite incorporation $(1/3 = SiO_2/C \text{ ratio})$ on the 39^a Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

synthesis. In **Table 2** photoconversion results of CO_2 to CH_3OH using solar simulation are shown.

Table 2- Photoconversion of CO₂ to CH₃OH

Material	µmol CH₃OH	Yield %
TiO ₂ P25	0	0
MCM-48/Cu ₂ O	131	2,43
CCM-MCM-48/Cu ₂ O	86	1,61
MCM-48/CuO	188	3,37
CCM-MCM-48/CuO	145	2,72

The results demonstrate the influence of surface area and nature of nanoparticles. MCM-48/CuO exhibit higher photoconversion for CH₃OH and, after graphite incorporation a decreased yield (-20%). The same phenomena were observed for CCM-MCM-48/Cu₂O and MCM-48/Cu₂O (-34,5%). This process can be associated to the blocking of the active sites caused by graphite. The higher photoconversion of CO₂ into CH₃OH using CuO/Cu₂O nanoparticles is attributed to the adequate energy levels and smaller value of band gap of semiconductors (CuO =1.7 eV and Cu₂O = 2.2 eV), who promote a more efficient electronic transfer for the CO₂ photoreduction into methanol, when compared with TiO₂ P25, (TiO₂=3,2 eV) material used as a reference.

Conclusion

The results showed that these materials are promising candidates for catalysts of CO₂ photoconversion to obtain higher value-added products. The incorporation of carbon on the material decreases the conversion, due to lower surface area, and possibility because of active sites blocking to the light.

Acknowledgment

We acknowledge the financial support from FAPESP (2012/08904-3).

^{[1]-}Froba M., Kohn R., Bouffaud G., Richard O., van Tendeloo G., Chem. Mater., **1999**, 11, 2858-2865.

^{[2]-} Gallo J. M. R., Gatti G., Graizzaro A., Marchese L., Pastore H. O., J. Power Source, (2011) 8188–8196.

^{[3]-} Koshy J., Soosen S. M., Chandran A., George K. C., AIP Conf. Proc. 2011, 1391, 576

^{[4]-} Yazdanpour N., Sharifnia S., Sol. Energ. Mat. Sol. C., 2013, 1-8.